0.0
NA
CVE-2025-71089
iommu: disable SVA when CONFIG_X86 is set
Description

In the Linux kernel, the following vulnerability has been resolved: iommu: disable SVA when CONFIG_X86 is set Patch series "Fix stale IOTLB entries for kernel address space", v7. This proposes a fix for a security vulnerability related to IOMMU Shared Virtual Addressing (SVA). In an SVA context, an IOMMU can cache kernel page table entries. When a kernel page table page is freed and reallocated for another purpose, the IOMMU might still hold stale, incorrect entries. This can be exploited to cause a use-after-free or write-after-free condition, potentially leading to privilege escalation or data corruption. This solution introduces a deferred freeing mechanism for kernel page table pages, which provides a safe window to notify the IOMMU to invalidate its caches before the page is reused. This patch (of 8): In the IOMMU Shared Virtual Addressing (SVA) context, the IOMMU hardware shares and walks the CPU's page tables. The x86 architecture maps the kernel's virtual address space into the upper portion of every process's page table. Consequently, in an SVA context, the IOMMU hardware can walk and cache kernel page table entries. The Linux kernel currently lacks a notification mechanism for kernel page table changes, specifically when page table pages are freed and reused. The IOMMU driver is only notified of changes to user virtual address mappings. This can cause the IOMMU's internal caches to retain stale entries for kernel VA. Use-After-Free (UAF) and Write-After-Free (WAF) conditions arise when kernel page table pages are freed and later reallocated. The IOMMU could misinterpret the new data as valid page table entries. The IOMMU might then walk into attacker-controlled memory, leading to arbitrary physical memory DMA access or privilege escalation. This is also a Write-After-Free issue, as the IOMMU will potentially continue to write Accessed and Dirty bits to the freed memory while attempting to walk the stale page tables. Currently, SVA contexts are unprivileged and cannot access kernel mappings. However, the IOMMU will still walk kernel-only page tables all the way down to the leaf entries, where it realizes the mapping is for the kernel and errors out. This means the IOMMU still caches these intermediate page table entries, making the described vulnerability a real concern. Disable SVA on x86 architecture until the IOMMU can receive notification to flush the paging cache before freeing the CPU kernel page table pages.

INFO

Published Date :

Jan. 13, 2026, 4:16 p.m.

Last Modified :

Jan. 13, 2026, 4:16 p.m.

Remotely Exploit :

No

Source :

416baaa9-dc9f-4396-8d5f-8c081fb06d67
Affected Products

The following products are affected by CVE-2025-71089 vulnerability. Even if cvefeed.io is aware of the exact versions of the products that are affected, the information is not represented in the table below.

No affected product recoded yet

Solution
Disable IOMMU SVA on x86 systems until IOMMU caches can be flushed before page freeing.
  • Disable SVA on x86 systems.
  • Implement deferred freeing for kernel page table pages.
  • Notify IOMMU to invalidate caches before page reuse.
References to Advisories, Solutions, and Tools
CWE - Common Weakness Enumeration

While CVE identifies specific instances of vulnerabilities, CWE categorizes the common flaws or weaknesses that can lead to vulnerabilities. CVE-2025-71089 is associated with the following CWEs:

Common Attack Pattern Enumeration and Classification (CAPEC)

Common Attack Pattern Enumeration and Classification (CAPEC) stores attack patterns, which are descriptions of the common attributes and approaches employed by adversaries to exploit the CVE-2025-71089 weaknesses.

We scan GitHub repositories to detect new proof-of-concept exploits. Following list is a collection of public exploits and proof-of-concepts, which have been published on GitHub (sorted by the most recently updated).

Results are limited to the first 15 repositories due to potential performance issues.

The following list is the news that have been mention CVE-2025-71089 vulnerability anywhere in the article.

The following table lists the changes that have been made to the CVE-2025-71089 vulnerability over time.

Vulnerability history details can be useful for understanding the evolution of a vulnerability, and for identifying the most recent changes that may impact the vulnerability's severity, exploitability, or other characteristics.

  • New CVE Received by 416baaa9-dc9f-4396-8d5f-8c081fb06d67

    Jan. 13, 2026

    Action Type Old Value New Value
    Added Description In the Linux kernel, the following vulnerability has been resolved: iommu: disable SVA when CONFIG_X86 is set Patch series "Fix stale IOTLB entries for kernel address space", v7. This proposes a fix for a security vulnerability related to IOMMU Shared Virtual Addressing (SVA). In an SVA context, an IOMMU can cache kernel page table entries. When a kernel page table page is freed and reallocated for another purpose, the IOMMU might still hold stale, incorrect entries. This can be exploited to cause a use-after-free or write-after-free condition, potentially leading to privilege escalation or data corruption. This solution introduces a deferred freeing mechanism for kernel page table pages, which provides a safe window to notify the IOMMU to invalidate its caches before the page is reused. This patch (of 8): In the IOMMU Shared Virtual Addressing (SVA) context, the IOMMU hardware shares and walks the CPU's page tables. The x86 architecture maps the kernel's virtual address space into the upper portion of every process's page table. Consequently, in an SVA context, the IOMMU hardware can walk and cache kernel page table entries. The Linux kernel currently lacks a notification mechanism for kernel page table changes, specifically when page table pages are freed and reused. The IOMMU driver is only notified of changes to user virtual address mappings. This can cause the IOMMU's internal caches to retain stale entries for kernel VA. Use-After-Free (UAF) and Write-After-Free (WAF) conditions arise when kernel page table pages are freed and later reallocated. The IOMMU could misinterpret the new data as valid page table entries. The IOMMU might then walk into attacker-controlled memory, leading to arbitrary physical memory DMA access or privilege escalation. This is also a Write-After-Free issue, as the IOMMU will potentially continue to write Accessed and Dirty bits to the freed memory while attempting to walk the stale page tables. Currently, SVA contexts are unprivileged and cannot access kernel mappings. However, the IOMMU will still walk kernel-only page tables all the way down to the leaf entries, where it realizes the mapping is for the kernel and errors out. This means the IOMMU still caches these intermediate page table entries, making the described vulnerability a real concern. Disable SVA on x86 architecture until the IOMMU can receive notification to flush the paging cache before freeing the CPU kernel page table pages.
    Added Reference https://git.kernel.org/stable/c/240cd7f2812cc25496b12063d11c823618f364e9
    Added Reference https://git.kernel.org/stable/c/72f98ef9a4be30d2a60136dd6faee376f780d06c
    Added Reference https://git.kernel.org/stable/c/c2c3f1a3fd74ef16cf115f0c558616a13a8471b4
    Added Reference https://git.kernel.org/stable/c/c341dee80b5df49a936182341b36395c831c2661
EPSS is a daily estimate of the probability of exploitation activity being observed over the next 30 days. Following chart shows the EPSS score history of the vulnerability.
Vulnerability Scoring Details
No CVSS metrics available for this vulnerability.